

RHM15L

Process Sized Coriolis Mass Flow Meter

Features

- Standard pressure ratings up to 882 bar (12792 psi)
- Temperature ratings from -196 to 350°C (-320 to 662°F)
- Mass flow uncertainty down to 0.12%
- Density uncertainty down to 0.5%
- Repeatability better than 0.05%
- Nominal measuring range between 2 and 200 kg/min
- Accurately measure low flow rates down to 1 kg/min
- Unique robust torsion driven oscillation system
- Rheonik *AnyPipeFit Commitment* brings you the possibility to get any custom process connection type and size for savings on installation costs. Compact design with minimal footprint
- Approved for use in hazardous areas
- Stainless steel case
- Removable connection manifold version available for easy and efficient maintenance

Applications

- General Flow Control
- Plant Balance
- Additive Dosing
- Mixing
- Batching
- Package and Container Filling

Rheonik Sensor Benefits

- Torsion oscillator design assures a stable and drift free measurement with excellent signal to noise ratios
- Resilient to external noise and vibration
- Insensitive to pipe pressure changes
- Robust tube wall thickness provides increased operational safety in abrasive applications
- Corrosion resistant
- Long sensor life guaranteed due to low mechanical stresses in the meter mechanism
- No moving parts to wear or fail

General Specification Overview

•	
Nominal Flow (Q _{nom})*	200 kg/min (440.9 lb/min)
Minimum Flow (Q _{min})*	4 kg/min (8.8 lb/min)
Serial Tube/ Single Path	Flow rates Q_{nom} and Q_{min} will be 50% of the above listed parallel/dual tube version
Operating Temperature	Temperature range options cover applications from -196°C to 350°C (-320°F to 662°F)
Pressure Ratings	Up to 882 bar / 112792 psi - dependent upon material
Electrical Connection	Cable entry M25 x 1.5 (standard); M20 x 1.5, ½" NPT, ¾" NPT (optional) Max. cable length to remote RHE transmitter 100m / 330ft
Sensor Enclosure Materials	Stainless steel (standard), 316 stainless steel (optional) Epoxy coated aluminum terminal box (standard), 316 stainless steel terminal box (optional)
Enclosure Type	Protection class IP65 (standard); IP 66 / NEMA 4X (optional)
Wetted Materials	1.4571 (316Ti), 2.4602 (Alloy C22), Tantalum, 1.4410 (SuperDuplex) Seal material (manifold construction): PTFE Additional/customer specific materials available upon request
Process Connections	Nearly any - the RHEONIK AnyPipeFit Commitment . Consult factory for types/sizes not listed in this data sheet
Pressure Rating Compliance	Europe – PED: Sound Engineering Practice (SEP), Module A2, Module B3.2+C2
Certifications and Approvals	ATEX / IECEx Approvals for zone 0, 1, 2 (suitably rated RHE transmitter required) North American Approvals for Class I, Div. 1, Groups ABCD (suitably rated RHE transmitter required) American Bureau of Shipping (ABS) Product Type Approval for use on marine vessels
Documentation, Testing and Inspection	All sensors are hydro tested, calibrated and supplied with a traceable calibration certificate. Customized calibration and testing services available
Project Documentation and QA, Services	 Rheonik offers a full set of services for large and complex engineering projects. Typical services offered are, but not limited to: Certificates of origin and conformity, mill certificates Data books including WPAR, WQS, NDT, test & quality plans, functional testing, calibration procedures, customized packing, factory acceptance etc. Start up and commissioning services on/offshore
Options	Enclosure heating for high temperature applications Cleaning for oxygen service Full service painting to project specifications – consult factory

* At Q_{nom} pressure drop across a parallel tube sensor will be approximately 2 bar (29 psi) for H₂0. Sensors can be operated at higher flow rates but pressure drop will be higher. Maximum recommended velocity (liquid) through the sensor is 15 m/s. Beyond this point, cavitation may occur. Q_{min} is the recommended lowest flow rate. Sensors will measure flow rates lower than Q_{min} , but uncertainty will increase beyond 0.5% of rate.

The flow rate specifications above relate to standard pressure parallel tube sensor versions. Models with higher pressure ratings have increased wall thickness and will have higher pressure drops/lower Q_{nom} values.

Measurement Performance

	0.5% ()	1.5	
А	0.5% Uncertainty	1.0	Q _{nom} Q _{nom}
	$\pm 0.5\%$ uncertainty between \textbf{Q}_{nom} and \textbf{Q}_{min}		
в	0.2% Uncertainty	0.0 ainty	
D	$\pm 0.2\%$ uncertainty between Q_{nom} and $Q_{0.2}$	0.0 6.5	Mass Flow Rate
igher	pressure units may have lower Q _{nom} values due to reduced tube	ID ⊆	
		-1.0	← Q _{0.2}
		-1.5	
		-2.0	
old	line Calibration	2.0	
	0.12% Uncertainty	1.5	$Q_{\rm G}$
G	±0.12% uncertainty between	1.0	
	$Q_{\rm G}$ and $(Q_{\rm G}/20)$	[≫] 0.5	
	0.1% Uncertainty	Uncertainty (%) 0.0 2.0-	
Р	±0.1% uncertainty between	-0.5	Mass Flow Rate
	$Q_{\rm g}$ and $(Q_{\rm g}/10)$	⊃ -1.0	
nly fo	r sensors with standard temperature and pressure range	-1.5	← Q _G /20
	nized calibration services are available – consult factory	-2.0	
		2.0	
	Flow Calibration		
ow		1.5	
	1:20 Turn Up Calibration	1.5	Q _{iow} Q _{min} *20
ow C	±0.2% uncertainty between Q _{min} and	1.0	Q _{iow} Q _{min} *20
	-	1.0	Q _{iow} Q _{min} *20
	±0.2% uncertainty between Q _{min} and	1.0	
С	 ±0.2% uncertainty between Q_{min} and (Q_{min}*20) Low Flow Optimized Calibration ±0.2% uncertainty between Q_{min} and 	1.0 (%) 4	Q _{iow} Q _{min} *20 Mass Flow Rate
	±0.2% uncertainty between Q _{min} and (Q _{min} *20) Low Flow Optimized Calibration	1.0	

Flow Rates

Q _{nom}	200 kg/min (440.9 lb/min)
Q _{min}	4 kg/min (8.8 lb/min)
Q _G	150 kg/min (440.9 lb/min)
Q _{0.2}	10 kg/min (22.0 lb/min)
Q _{low}	2 kg/min (4.5 lb/min)

Select the calibration option (A,B,G,P,C,1) required and include in the overall part number

For Serial Tube versions, the Q values above are halved

Flow Measurement Repeatability Standard $\pm 0.1\%$ of rate Goldline $\pm 0.05\%$ of rate

Temperature Performance

Better than ±1°C

Density Calibration

N*	No Live Density Calibration
S	Standard +/- 0.01 kg/liter uncertainty between 500 and 1400 kg/m3
D	Enhanced +/- 0.005 kg/liter uncertainty between 500 and 1400 kg/m3

For live volumetric flow, S or D calibration must be included in the part number and the sensor must be operated by an RHE with live density capability.

* Even with No Live Density Calibration, volumetric flow can still be calculated with an inferred density value based upon a manually entered norm density value and its temperature gradient.

Calibration Reference Conditions

Performance statements relate to the following conditions:

- Water (for mass flow accuracy)
- Temperature: 18 to 24°C (66 to 76°F)
- Pressure at 1 to 3 barg (15 to 45 psig)
- RHM with standard temperature, material and pressure range

THE CORIOLIS EXPERTS

Contact us: www.rheonik.com

Measurement Tube Pressure Ratings

The maximum pressure (P_{max}) of a sensor is determined by its lowest rated part. The lowest rated part can be either the measurement tube $(P_{max} \text{ indicated below})$, the construction type $(P_{max} \text{ indicated in the Part Number Code section})$ or the process connection (for P_{max} see published standards or manufacturer information).

Pressure Code	Material Code	Material			Pmax		
Flessule Coue	Waterial Coue	Waterial	bar	psi		°C	°F
			165	2393	@	50	122
	N11 (atal)	1.4571 (316Ti)	150	2176	@	120	248
	M1 (std.)	UNS S31635	127	1842	@	210	410
			107	1552	@	350	662
			228	3307	@	50	122
	N40	2.4602 (Alloy C22)	201	2915	@	120	248
	M3	UNS N06022	172	2495	@	210	410
			143	2074	@	350	662
P1 (std.)*		Tantalum	44	638	@	50	122
	M4**	Tantalum	39	565	@	120	248
		UNS R05200	36	522	@	210	410
		1.4410 (Super Duplex)	395	5729	@	50	122
	10***		346	5018	@	120	248
		UNS \$32750	313	4540	@	210	410
		1.4462 (Duplex)	315	4569	@	50	122
	62***	UNS \$31803	276	4003	@	120	248
		0103 33 1803	242	3510	@	210	410
			352	5105	@	@ 50	122
	N/I ⁻¹	1.4571 (316Ti)	300	4351	@	120	248
	IVIT	UNS S31635	250	3626	@	210	410
			210	3046	@	350	662
			540	7832	@	50	122
	M3	2.4602 (Alloy C22)	477	6918	@	120	248
P2	IVIS	UNS N06022	407	5903	@	210	410
12			339	4917	@	350	662
		1.4410 (Super Duplex)	882	12792	@	50	122
	10***	UNS \$32750	773	11211	@	120	248
		0115 3327 30	699	10138	@	210	410
		1.4462 (Duplex)	704	10211	@	50	122
	62***	UNS S31803	617	8949	@	120	248
		0145 221002	540	7832	@	210	410
			540	7832	@	50	122
Р3	M1	1.4571 (316Ti)	450	6527	@	120	248
	P3 M1	UNS S31635	350	5076	@	210	410
			300	4351	@	350	662

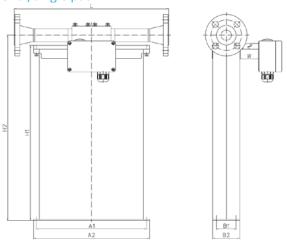
*Maximum flange rating is ANSI CL 300 / PN40

**Only with N1, NA, E2 temperature range (note max. operating temp. is 130°C) and PF0 construction type (max. ANSI Cl. 300/PN40)

***Only with N1, NA, E2 temperature range (note min. temp. is -40°C) and seal-less construction type

Other Materials and Pressure Ratings

Higher pressure rated measurement tubes in the materials above may be possible. Other wetted materials (e.g. Inconel, Monel, 304 stainless steel, others) are also possible for chemical compatibility, lower pressure drop, abrasion allowance and other application specific requirements. *Contact factory with specification for assessment and availability.*

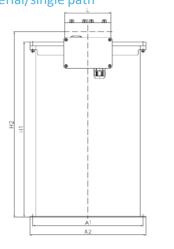


Mechanical Construction

Sensors are manufactured with two internal measurement tubes arranged side by side. In parallel or dual path sensors (order code Pxx), these tubes are connected in parallel and the flowing fluid is split equally between them. In serial or single path sensors (order code Sxx), the internal tubes are connected end to end, creating a single path through which all fluid flows. Manifold designs have a removable inlet/outlet manifold block and utilize PTFE seals between the manifold and sensor body. In seal-less designs, the measurement tubes are continuous between the process connections and do not have seals. Manifold designs offer shorter delivery lead times and may have a lower pressure drop than seal-less designs for the same flow rate.

Manifold design with seals - flange connections PM0 / PH0: parallel/dual path

SMO: serial/single path



Process Connection	Dim. L mm / in	Dim. H2 mm / in	Order Code
ANSI 1" 150#RF	400/15.75	481/18.94	A1
ANSI 1" 300#RF	400/15.75	481/18.94	A2
ANSI 1" 600#RF	400/15.75	481/18.94	A3
ANSI 1" 150#RF	400/15.75	481/18.94	A1
ANSI 1" 300#RF	400/15.75	481/18.94	A2
ANSI 1" 1500#RTJ	450/17.72	481/18.94	R3
DIN DN25/PN40 Form C	400/15.75	481/18.94	D1
DIN DN25/PN100 Form E	400/15.75	481/18.94	D2

1. Manifold blocks are manufactured from 316Ti (1.4571) stainless steel

Manifold design with seals - threaded connections PM0 / PH0: parallel/dual path

SMO: serial/single path

Dimensions	mm	in
A1	285	11.22
A2	300	11.81
B1	50	1.97
B2	70	2.76
H1	454	17.87
V	26	1.02

Process Connection	Dim. L	Dim. H2	Order
Process connection	mm / in	mm / in	Code
Female Thread G ¾"	120 / 4.72	481/18.94	G1
Female Thread ¾" NPT	120 / 4.72	481/18.94	N1

1. Manifold blocks are manufactured from 316Ti (1.4571) stainless steel

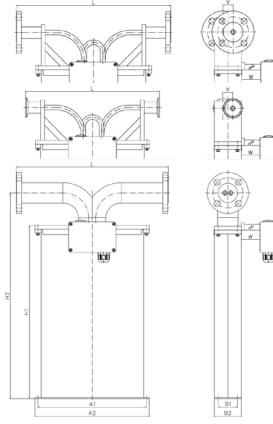
Standard blue terminal box in Aluminum, size = 125 x 80 x 57 mm (4.92 x 3.15 x 2.24 in) - optionally available with integral RHE45 transmitter

Optional SS 316 box, size = 100 x 100 x 61 mm (3.94 x 3.94 x 2.40 in) - only for remote transmitter

W = 0 mm (0 in) for Aluminum box and Temperature Range N1 and NA W = 30 mm (1.2 in) for SS 316 box and Temperature Range N1 and NA W = 150 mm (5.91 in) for all other combinations

NOTE: Junction boxes are supplied with M25 x 1.5 cable entries as standard. M20 x 1.5, %" NPT, %" NPT cable entries are optionally available and must be ordered separately.

All dimensions are for standard products. For customization of face to face length and/or process connection types other than the ones listed on this page, please consult factory. Note that larger diameter flange process connections are always possible.



Mechanical Construction (continued)

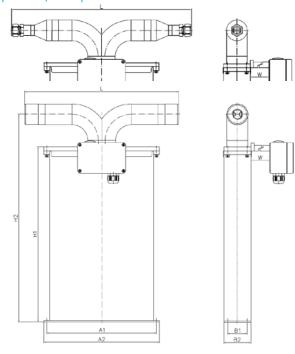
Seal-less design with flange connections

SFO: serial/single path

PF0: parallel/dual path

Process Connection	Dim. L mm / in	Dim. H2 mm / in	Order Code
ANSI 1½" 150#RF	400 / 15.75	540 / 21.26	F1
ANSI 11/2" 300#RF	400 / 15.75	540/21.26	F2
ANSI 11/2" 600#RF	400 / 15.75	540/21.26	F3
ANSI 11/2" 1500#RF	400 / 15.75	540/21.26	F5
ANSI 11/2" 2500#RF	450 / 17.72	540/21.26	F4
ANSI 11/2" 1500#RTJ	400/15.75	540/21.26	R4
ANSI 11/2" 2500#RTJ	450 / 17.72	540/21.26	R5
DIN DN40/PN40 Form C	400 / 15.75	540/21.26	C1
DIN DN40/PN100 Form E	400 / 15.75	540/21.26	C2
Sanitary 1" Triclamp, DIN 32676 (only with SF0)	350/13.78	540/21.26	SO
Sanitary NW20, DIN 11851 (only with SF0)	350/13.78	540/21.26	S2

For hub connectors (e.g. Destec, Galperti, Grayloc, Techlok) or JIS flanges please consult factory
 SF0 meters are constructed with offset inlet/outlet ports. Consideration should be given to the


offset (dimension V) when planning installation Pmax for sanitary fitting S0 is 17.2 bar (250 psi) @120°C (248°F) 3.

4.

 $\begin{array}{l} \label{eq:product} \label{eq:product} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tab$ 5. facing disc for some material selections (e.g. Tantalum)

6. Other dimensions on previous page

Seal-less design with threaded or tube connections PFT: parallel/dual path

Process Connection	Dim. L	Dim. H2	Order
Process connection	mm / in	mm / in	Code
Female Thread G ¾"	400 / 15.75	540/21.26	G1
Female Thread ¾" NPT	400 / 15.75	540/21.26	N1
Swagelok ¾" tube compression fitting (SS-1210- 1-12W)	470 / 18.50	540/21.26	W1

1. Other dimensions on previous page

All dimensions are for standard products. For customization of face to face length and/or process connection types other than the ones listed on this page, please consult factory. Note that larger diameter flange process connections are always possible.

THE CORIOLIS EXPERTS Contact us: www.rheonik.com

RHM15L Part Number Code

Temperature Range

- N1 -20 to +120°C (-4 to +248°F) (std.)
- NA -50 to +120°C (-58 to +248°F)
- E2 -50 to +210°C (-58 to +410°F) (For Tantalum sensors max. operating temp. 130°C/max design temp. +210°C)
- E3 -196 to +50°C (-320 to +122°F)
- H4 0 to +350°C (+32 to +662°F)

Pressure Code for Pmax of Measuring Loops

The source could for this of the	
See pressure ratings page for r	ratings and codes
Construction Type - pmax	x indications refer to @ 120°C (248°F)
PM0 Parallel manifold,	pmax = 230 bar (3336 psi) with thread, 214 bar (3104 psi) with flange
SM0 Serial manifold, pr	nax = 230 bar (3336 psi) with thread, 214 bar (3104 psi) with flange
	old, pmax = 420 bar (6092 psi)
PFO Parallel path, seal	l-less
SFO Serial path, seal-le	
PFT Parallel path, seal	l-less for thread connection, pmax = 250 bar (3626 psi)
Material of Wetter	d Parts
M1 1.4571 (316	Ti) (std.)
M3 2.4602 (Allo	y C22), seal-less construction types only
M4 Tantalum, P	F0 construction type only
XX Other mater	rials, e.g. SuperDuplex, Monel are available upon request
Process Con	nection
See mechan	ical construction pages for available connections and codes
Termin	nal Box
ML	Coated aluminum TB, M25 cable entry (options available)
SM	SS 316 TB, M25 cable entry (options available)
TM	No TB. 2m fixed / integral PTFE cable to RHE
J5	Coated aluminum TB for integral RHE45, one or two M12 sockets
	Options Codes
	NN No options
	See options listing for specific codes
	Hazardous Area Certifications
	NN Without Ex Approval
	A0 ATEX/IEC Approvals Zone 0: Ex II 1G Ex ia IIC T1T6 Ga
	A1 ATEX/IEC Approvals Zone 1: Ex II 2G Ex ib IIC T1T6 Gb
	CO CSA Approval USA-Canada Class I, Div. 1, Groups ABCD
	Pressure Design Compliance
	NN No specific design compliance required
	SE PED (SEP) for xM0, xH0, SF0 with S0, S2
	A2 PED Mod. A2 for all others unless unstable gas
	BC PED Mod. B3.2+C2 if SE, A2 do not apply
	CA CRN-Alberta Province Only
	CR CRN - All Provinces except Alberta
	Mass Flow Calibration Selection
	See performance page for code options
	Density Calibration Selection
	See performance page for code options
	Additional Manufacturing Instructions
	N None O Oil/grease free cleaning
	S Marine packing

Ν

RHM15L

Options and Accessories

	RHM15L Part Number Option Codes
H1	Hot oil/steam heating matrix for housing, DN15 PN40
H2	Hot oil/steam heating matrix for housing, ½" ANSI 150 RF
H3	Hot oil/steam heating matrix for housing, ½" ANSI 300 RF
P2	Housing purge connections - ½" NPT (2 pcs)
SB	Housing in 316 stainless steel
WH	Fully welded/sealed housing
DY	Dye penetrant inspection
XR	X-ray test – PFT, xM0 (flange) types only
NOTE: when specifvi	ing a sensor with multiple part code options (i.e. SH and WH), separate each code with a comma in the part strina (i.eSB,WH,)

sor with multiple part code options (i.e. SH and WH), separate each code with a comma in the part string (i.e. ...SB,WH...)

Cable Entry Options (order separately)	
ORHM-E1	1/2" NPT terminal box cable entry
ORHM-E2	M20 x 1.5 terminal box cable entry
ORHM-E3	¾" NPT terminal box cable entry
Standard cable entry on terminal box is M25 x 1 5	

Standard cable entry on terminal box is M25 x 1.5

Transmitter Range

Any Rheonik Mass Flow Transmitter model can be combined with any Rheonik Mass Flow Sensor to provide an overall mass flow measurement system to suit any requirement. Rheonik Coriolis transmitters are available in versions specifically designed for process, industrial and OEM applications. Together they offer a tremendous range of options for system designers and end users alike. See separate data sheet for the features of each transmitter style

About Rheonik

Rheonik has a single purpose: to design and manufacture the very best Coriolis meters available.

Our research and engineering resources are dedicated to finding new and better ways to provide cost effective accurate mass flow solutions. Our manufacturing group care for each and every meter we produce from raw materials all the way to shipping and our service and support group are available to help you specify, integrate, start-up and maintain each and every Rheonik meter you have in service. Whether you own just one meter or have hundreds, you will never be just another customer to us. You are our valued business partner.

Need a specific configuration for your plant - don't compromise with a "standard" product from elsewhere that will add extra cost to your installation. If we can't configure it from our extensive product range, our exclusive *AnyPipeFit Commitment* can have your flow sensor customized with any size or type process connection you need.

No matter what control system you use as the backbone in your enterprise, with our *AnyInterface Commitment*, you can be sure that connection and communication will not be a problem. Alongside a wide variety of discrete analog or digital signal connections, we can also provide just about any network/bus interface available (for example: HART, ProfibusDP, ProfiNet, EtherCAT, PowerLink, EtherNet/IP, CAN,) with our RHE4x family of transmitters. Rheonik RHE4X transmitters can connect to your system – no headache and no conversion needed.